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Abstract

The linear bandit problem with adversarial corruptions is a variant of the standard stochastic linear
bandit problem where the agent observes a reward corrupted by an adversary, rather than one stochas-
tically drawn from the environment. Such an adversary has been proposed with Huber contamination
[Chen et al., 2022] and strong contamination with bounded rewards [Kapoor et al., 2019]. In this paper,
we specifically focus on total variation (TV) contamination: the formulation of adversarial corruptions
where the adversary can change the rewards arbitrarily at every round; however, there is a fixed budget
C for the total difference the rewards can change [Zhao et al., 2021]. We offer a deep dive of the analysis
presented in [Zhao et al., 2021] for the Robust Weighted OFUL algorithm, an algorithm designed to
achieve robust performance in the TV-contamination setting.

1 Introduction

Linear bandits are used in a wide range of real-world applications [Bouneffouf and Rish, 2019], such as online
advertising [Li et al., 2010], education [Cai et al., 2021], mobile health [Liao et al., 2019, Trella et al., 2022],
etc. The popularity of linear bandits can be attributed to its ability to leverage contextual information for
action selection, while also staying tractable and learning well in high-noise or data-sparse regimes. In fact,
linear bandits can be seen as a severe form of regularization (i.e., using a lower discount factor than the true
discount factor) for Markov Decision Process (MDP) algorithms, which has been shown to lead to selecting
more effective actions [Jiang et al., 2015].

Although linear bandits have been studied extensively in non-corrupted settings (i.e., agent observes true
rewards stochastically generated by the environment), a body of work closely related to the robust regression
literature has emerged to consider settings where the agent receives rewards possibly corrupted by some
adversary. These settings are closer to many real world environments. For example, in online advertising,
the agent could observe clickfraud from a bot rather than a real user [Lykouris et al., 2018]. It’s important
to note that not all corruptions need to be malicious or even intentional: Natural outliers (extremely high
or low values) can affect the performance of agents trained on with such data. For example, in the online
mobile health setting, the agent could receive inaccurate sensory data (used to form the reward) due to
real-world challenges (e.g., user did not charge or properly wear their device, user does not have stable WiFi
connectivity) [Trella et al., 2022]. Regardless, it is increasing important to consider agents’ performance
in environment with adversarial corruptions to move towards developing algorithms more robust to real
life. Multi-armed bandits with adversarial corruptions have been considered in [Lykouris et al., 2018] and
[Gupta et al., 2019], however the stochastic linear bandit setting is more generalizable than the multi-armed
bandit setting (See Section 2.2.1).

In this expository work, we first present a generic form for the stochastic linear bandit problem with
adversarial corruptions on rewards (Section 2.2) and offer some notable examples. We then provide an
in-depth walk-through of an approach and analyses in the TV contamination setting. We formally define
the TV contamination setting (Section 3), cover the regret analysis for an algorithm that assumes known
corruption level (Section 3.3), and cover a brief overview of an extension when the corruption level is unknown
(Section 3.4). Finally, we offer suggestions for further reading (Section 4).

2 Problem Setting

2.1 Notation

We introduce the following notation used throughout the paper. For some vector v ∈ Rd, we use ∥v∥2 =√
⟨v, v⟩ to denote the L2-norm of v and v⊤ to denote the transpose of v. For some positive definite matrix

M ∈ Rd×d, M−1 denotes the inverse of M , and ∥v∥2M = v⊤Mv denotes the square of the weighted L2-norm
of v. We use Õ(·) to denote big O notation that ignores logarithm factors. I[·] denotes the indicator function.

2.2 Stochastic Linear Bandits with Adversarial Corruptions

We set up a general formulation for the linear contextual bandits with adversarial corruptions problem. We
first describe standard stochastic linear bandits [Lattimore and Szepesvári, 2020, Abbasi-Yadkori et al., 2011]
and then describe adversarial corruptions.

2.2.1 Stochastic Linear Bandits

Let Xt ⊂ Rd be the action space given to the agent at time t. For time-step t, when an agent selects action
xt ∈ Xt, the environment generates a reward:

r∗t = x⊤t θ
∗ + ϵt (1)
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where θ∗ ∈ Rd′
is the true reward parameter which is fixed but unknown. ϵt is the noise parameter with

mean 0. Typically, ϵt is also assumed to be conditionally centered and σ-sub-Gaussian given the history
Ht = {X1, x1, r1, ...,Xt−1, xt−1, rt−1,Xt, xt}. Namely, E[ϵt|Ht] = 0 and E[exp(λϵt)|Ht] ≤ exp(λ2σ2/2) for
some σ > 0, ∀ λ > 0.

Different choices of Xt define other bandit frameworks. For example if Xt = {e1, .., ed} where (ei)i are
standard basis vectors, then θ∗ = [µ∗

1, ..., µ
∗
d] ∈ Rd becomes a vector of the true mean reward of each arm,

and the stochastic linear bandit problem becomes the finite multi-armed bandit setting. Additionally, let
Xt = {ψ(ct, i) : i ∈ [k]}, for ct ∈ Rd, where ψ(ct, i) denotes a vector in Rk·d that has ct in the d · (i − 1)th
entry and 0s elsewhere. Then θ∗ = [θ∗1 , ..., θ

∗
k] ∈ Rk·d becomes a vector of the true reward parameters θ∗a for

each action a, and the stochastic linear bandit problem becomes the linear contextual bandit setting.

2.2.2 Adversarial Corruptions

At every time-step t, instead of observing the true reward r∗t , the adversary may or may not corrupt the
reward following some corruption procedure (with limitations). The agent then observes rt. We offer a brief
overview of two notable examples of formulating adversarial corruptions.

Huber Contamination [Chen et al., 2022] formulates corrupted rewards under the Huber contamination
model. Under the Huber contamination model, every time-step, the reward has probability η ∈ (0, 12 )
(corruption parameter) of being corrupted.

Definition 1. (Huber-Contaminated Linear Contextual Bandits) Let S denote the arbitrary state space and
let A be the action space of size K where every action in A is available at every time-step t. Before the
interaction between the environment and the agent, an oblivious adversary selects distributions pr∗t [·|st] over
reward functions r∗t : A → [0, R] for all possible contexts st and time-steps t ∈ [T ]. Let noise value ϵt(s, a) =
ξt (i.e., noise is drawn independent of action and state) be bounded by σ2 (i.e., σ2 := sups,t E[ξ2t |sta = s]).

For each time-step t ∈ [T ]:

1. Nature chooses contexts St = {st1, st2, ..., st|A|}, potentially adversarially based on history Ht.

2. Agent selects action at ∈ A.

3. A Bern(η) coin is flipped giving sample Ot that decides whether this time-step is corrupted.

4. If Ot = 1 (time-step is not corrupted), then agent obtains reward rt = r∗t (a), specified by Equation 1
with noise value ϵt(s, a) = ξt.

5. If Ot = 0 (time-step is corrupted), then the agent obtains an arbitrary reward rt = rt(at) chosen by
the adversary based on st, at,Ht.

The goal of the agent is to minimize clean regret against the best policy π∗ as measured by the true
uncorrupted rewards.

RegretHCB(T ) := E
[ T∑

t=1

r∗t (at)− r∗t (π
∗(zt))

]
(2)

where π∗(s) := argmaxa f(s, a), the supremum ranges over all (non-adaptive) policies and the expectation is
over the randomness of the Bernoulli draw, the rewards, the choice of contexts, and the policy of the agent.

[Chen et al., 2022] proves a high-probability regret bound for their method of learning in the Huber-
Contaminated Linear Contextual Bandit setting. They first offer an algorithm for solving the offline case of
Huber-contaminated linear regression. They then convert the offline approach into achieving clean square
loss for online linear regression. Finally, they use a reduction from online regression to contextual bandits
[Foster and Rakhlin, 2020] to obtain an algorithm for contextual bandits.

Strong Contamination with Bounded Rewards [Kapoor et al., 2019] formulates an adaptive adver-
sary that has access to the true environment process, the history Ht (which includes the current action set
and the current action chosen by the agent), and the uncorrupted reward value. At every time-step t, the
adversary can only add a corruption value bt to the environment-generated rewards and rewards (corrupted
or not) are bounded (i.e., rt ∈ [−B,B] for some B > 0).

Namely, the final reward given to the agent is:

rt = x⊤t θ
∗ + ϵt + bt = r∗t + bt (3)

The only restriction for the adversary is that, at every point in the online process, the adversary can only
corrupt up to an η fraction of the rewards. Formally, let Gt = {τ < t | bτ = 0} and Bt = {τ < t | bτ ̸== 0}
denote the set of corrupted and uncorrupted time-steps, respectively. Then, |Bt| ≤ η · t ∀t.

Definition 2. (Linear Contextual Bandits with Strong Contamination on Bounded Rewards) .
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For each time-step t ∈ [T ]:

1. Nature chooses contexts St = {st1, st2, ..., st|A|}

2. Agent selects action at ∈ A.

3. Clean reward r∗t is generated according to Equation 1 conditioned on history Ht.

4. Adversary selects a corruption amount of bt after viewing agent selected action at, clean reward r∗t ,
and history Ht, while satisfying the constraint that |Bt| ≤ η · t

5. Agent observes reward rt = r∗t + bt

The goal of the agent is to minimize cumulative pseudo regret against an oracle measured by the true
uncorrupted rewards. Let a∗t = argmaxa∈At⟨a, θ∗⟩ be the best action that yields the highest expected, uncor-
rupted reward. The cumulative pseudo regret is:

Regretstrong(T ) :=

T∑
t=1

⟨a∗t , θ∗⟩ − E[rt] (4)

[Kapoor et al., 2019] presents RUCB-LIN, which preforms an estimation of θt of the true model parameter
θ∗, maintains a confidence set to model the region of uncertainty, and selects actions in a UCB-based way,
like the OFUL algorithm [Abbasi-Yadkori et al., 2011]. However, unlike OFUL which uses regularized least
squares to update θt, RUCB-LIN uses the TORRENT algorithm [Bhatia et al., 2017], which is a simple
and easily, implementable approach for robust regression against an adaptive adversary. At update time,
RUCB-LIN first obtains a model estimate from running TORRENT, and then uses the model estimate to
perform a pruning step (i.e., constructs an estimate of the set of uncorrupted points G̃t) and constructs a
confidence set whose center is the OLS estimate from the subset of data indexed by time-steps in G̃t (the
datapoints that the algorithm believes are uncorrupted). [Kapoor et al., 2019] also prove a regret bound for
their algorithm that scales sub-linearly with T and linearly with ηT .

3 Total Variation (TV) Contamination

We now offer an in-depth walk-through of the algorithm and analysis for the formulation presented in
[Zhao et al., 2021]. In this formulation, the adversary is able to alter the reward at every time-step, however,
the adversary has a limited corruption budget on how much they can alter the true rewards. Namely, there
is a bound on the total variation distance between true rewards and corrupted rewards (See Equation 5).

Definition 3. (Total Variation (TV) Contamination Linear Bandits) The interaction between the agent and
the environment contaminated by an adversary is as follows:

For each time-step t ∈ [T ]:

1. Nature chooses action set At = {at1, at2, ..., at|At|} ⊆ Rd, where each element represents a feasible
action that can be selected by the agent.

2. Nature generates stochastic reward function r∗t (a) = ⟨a, θ∗⟩+ ϵt(a) and variance bound σt(a) on ϵt(a),
for each a ∈ At.

3. The adversary observes At, r
∗
t (a), σt(a) and decides a corrupted reward function rt.

4. Agent observes At and selects action at ∈ At.

5. Adversary returns rt(at) and σt(a) to the agent.

Such an environment is called C-corrupted if the corruption level is:

C =
1

R+ 1

T∑
t=1

sup
a∈At

|r∗t (a)− rt(a)| (5)

where R is such that |ϵt(a)| ≤ R (range of the noise process).

3.1 Assumptions

Let the filtration Ft be Ft = σ(A1:t, a1:t−1, ϵ1:t−1, r1:t−1, σ1:t−1). For all time-steps t ∈ [T ] and actions

a ∈
⋃T

t=1 At, we have the following assumptions:

Assumption 1. (Bounded Action) ∥a∥2 ≤ A

Assumption 2. (Bounded Mean Reward) |⟨a, θ∗⟩| ≤ 1

Assumption 3. Noise process ϵt(a) satisfies:

• (Boundedness) |ϵt(a)| ≤ R

• (Martingale Difference Sequence) E[ϵt(a)|Ft] = 0

• (Bounded Variance) E[ϵt(a)2|Ft] ≤ σ2
t (a)

Assumption 4. (Bounded True Parameter) ∥θ∗∥2 ≤ B

Notice that because of Assumption 2 and 3, the drawn stochastic reward from the environment rt is
bounded |rt| ≤ R+ 1.
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3.2 Regret

Let the regret for an agent interacting in this environment be:

RegretTV(T ) =

T∑
t=1

⟨a∗t , θ∗⟩ − E
[ T∑

t=1

⟨at, θ∗⟩
]

(6)

where a∗t = argmaxa∈At
⟨a, θ∗⟩ is the optimal action for that time-step, and the expectation is with respect

to the randomness in the agent’s policy.

3.3 Algorithm for Known Corruption Level

If the corruption level C in Equation 5 is known to the agent, then a robust version of weighted OFUL
[Zhou et al., 2021, Abbasi-Yadkori et al., 2011] can achieve a regret upper bound of Õ(CRd

√
T ).

3.3.1 Concentration Inequality with Enlarged Ellipsoid

We first present and prove Lemma 1 which is needed to prove Lemma 2 which states that the confidence set
Ct we choose contains the true parameter θ∗ at all time-steps t.

Let the confidence set Ct be:
Ct := {θ | ∥θ − θt∥Σt

≤ αt} (7)

where Σt = λI +
∑t

i=1
1
σ̄2
t
aia

⊤
i (see Algorithm 1 for definition of σ̄t) and

αt = 8

√
d log

(R+ 1)2λ+ tA2

(R+ 1)2λ
log(4t2/δ) + 4

√
d log(4t2/δ) + C

√
d+

√
λB (8)

Notice that (αt)t is monotonically increasing with t.

Lemma 1. (Bernstein Inequality for Vector-Valued Martingales with Corruptions) Let {Ft}t be a filtration,
{xt, ηt}t≥1 be a stochastic process such that xt ∈ Rd is Ft-measurable and ηt ∈ R is Ft+1-measurable. Fix
constants R,L, σ, λ > 0, θ∗ ∈ Rd. For t ≥ 1, let ystocht = ⟨θ∗, xt⟩+ ηt and suppose ηt, xt also satisfy:

|ηt| ≤ R, E[ηt|Ft] = 0, E[η2t |Ft] ≤ σ2, ∥xt∥2 ≤ L

Suppose {yt} is a sequence such that
∑t

i=1 |yi − ystochi | = C(t) ∀t ≥ 1. Then, for any 0 < δ < 1, with
probability at least 1− δ, we have for all t ≥ 1:

∥θt − θ∗∥Vt
≤ βt + C(t) +

√
λ∥θ∗∥2

where θt = V −1
t bt, Vt = λI +

∑t
i=1 xix

⊤
i , bt =

∑t
i=1 yixi, and

βt = 8σ

√
d log

dλ+ tL2

dλ
log(4t2/δ) + 4R log(4t2/δ)

Proof. Let S(t) = {1 ≤ i ≤ t|yi ̸= ystochi } , bstocht =
∑t

i=1 y
stoch
i xi and θ

stoch
t = V −1

t bstocht Using Theorem 4.1
from [Zhou et al., 2021] (Bernstein inequality for vector-valued martingales without corruptions), we have
that with probability at least 1− δ, for all t ≥ 1:

∥θstocht − θ∗∥Vt ≤ βt +
√
λ∥θ∗∥2

We also know that:
∥θt − θstocht ∥Vt = ∥V −1

t (bt − bstocht )∥Vt

=

∥∥∥∥V −1
t

( t∑
i=1

yixi −
t∑

i=1

ystochi xi

)∥∥∥∥
Vt

=

∥∥∥∥( t∑
i=1

V −1
t (yi − ystochi )xi

)∥∥∥∥
Vt

≤
t∑

i=1

∥∥∥∥V −1
t (yi − ystochi )xi

∥∥∥∥
Vt

(extension of triangle-inequality)

=

t∑
i=1

|yi − ystochi | ·
∥∥∥∥V −1

t xi

∥∥∥∥
Vt

=

t∑
i=1

|yi − ystochi | · (V −1
t xi)

⊤VtV
−1
t xi

=

t∑
i=1

|yi − ystochi | · ∥xi∥V −1
t

(since V −1
t is symmetric)

≤ C(t) (since ∥xi∥V −1
t

≤ 1)

Therefore:
∥θt − θ∗∥Vt = ∥θt − θstocht + θstocht − θ∗∥Vt

≤ ∥θt − θstocht ∥Vt + ∥θstocht − θ∗∥Vt (by triangle-inequality)]

≤ βt + C(t) + λ∥θ∗∥2
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Algorithm 1: Robust Weighted OFUL, an extension of Weighted OFUL [Zhou et al., 2021]

Input:
V1 = λI, θ1 = 0, b1 = 0

1 for t = 1, 2, ..., T do
2 Observed action set At

3 Set Ct defined in Equation 7
4 Select action at = argmax

a∈At

maxθ∈Ct
⟨a, θ⟩.

5 Execute action at and observe rt, σt.

6 Set σ̄t = max{σt, (R+ 1)/
√
d}.

7 Update weighted RLS estimator: θt+1 = Σ−1
t+1bt+1, Σt+1 = Σt +

1
σ̄2
t
ata

⊤
t , bt+1 = bt +

1
σ̄2
t
rtat

Lemma 2. (True Parameter Contained in Enlarged Confidence Ellipsoid) Suppose the assumptions of
Lemma 1 hold. With probability at least 1− δ, we have θ∗ ∈ Ct for all t ≥ 1.

Proof. Using Lemma 1, we have with probability at least 1− δ:

∥θt − θ∗∥Σt
≤ βt + C(t) +

√
λ∥θ∗∥2

= 8σ

√
d log

dλ+ tA2

dλ
log(4t2/δ) + 4R log(4t2/δ) + C(t) +

√
λ∥θ∗∥2

≤ 8

√
d log

(R+ 1)2λ+ tA2

(R+ 1)2λ
log(4t2/δ)+4

√
d log(4t2/δ)+C(R+1)+

√
λ∥θ∗∥2 (since authors assume R+ 1 = O(

√
d))

≤ 8

√
d log

(R+ 1)2λ+ tA2

(R+ 1)2λ
log(4t2/δ) + 4

√
d log(4t2/δ) + C

√
d+

√
λ∥θ∗∥2

≤ 8

√
d log

(R+ 1)2λ+ tA2

(R+ 1)2λ
log(4t2/δ) + 4

√
d log(4t2/δ) + C

√
d+

√
λB

= αt

Therefore, θ∗ ∈ Ct for all t ≥ 1

3.3.2 Regret Bound

Theorem 3. (Regret Bound for Known Corruption Level) Set λ = 1/B2. Suppose the corruption level C is
a known constant and R ∈ R is an upper bound for the noise process. Assume Assumptions 1, 2, 3 all hold.
Then with probability at least 1− δ, Algorithm 1 achieves regret bounded by:

Regret(T ) ≤ Õ

(
Cd

√√√√ T∑
t=1

σ2
t + C(R+ 1)

√
dT

)
(9)

Proof. From Lemma 2, we know that θ∗ ∈ Ct for all t ∈ [T ]. Then the total regret (w.r.t. a standard oracle)
is bounded as follows:

Regret(T ) = E

[
T∑

t=1

⟨a∗t , θ∗⟩ − ⟨at, θ∗⟩

]
Let δt := ⟨a∗t , θ∗⟩−⟨at, θ∗⟩ and θ̃t ∈ Ct be the parameter in the confidence set for which ⟨at, θ̃t⟩ = max

θ∈Ct

⟨at, θ⟩.
Notice that

⟨a∗t , θ∗⟩ ≤ max
θ∈Ct

⟨a∗t , θ⟩ (since θ∗ ∈ Ct)

≤ ⟨at, θ̃t⟩ (by def. of algorithm which selects at = argmax
a∈At

max
θ∈Ct

⟨a, θ⟩)

Therefore:
δt ≤ ⟨at, θ̃t⟩ − ⟨at, θ∗⟩ = ⟨at, θ̃t − θ∗⟩

≤ ∥at∥Σ−1
t
∥θ̃t − θ∗∥Σt

(Cauchy-Schwartz and bounding ∥ · ∥Σ−1
t

≤ ∥ · ∥Σt
Lemma 5)

≤ ∥at∥Σ−1
t
2αT (bounding by diameter of ellipsoid)

≤ ∥at∥Σ−1
t
2αT (by monotonicity of (αt)t)

Notice also that by Assumption 2, δt ≤ |⟨a∗t , θ∗⟩ − ⟨at, θ∗⟩| ≤ |⟨a∗t , θ∗⟩|+ |⟨at, θ∗⟩| ≤ 2. So:

Regret(T ) ≤ E

[
T∑

t=1

min(2, ∥at∥Σ−1
t
2αT )

]

We now break up the indices t into two cases and bound each case. Define I1 := {t ∈ [T ] : ∥at/σ̄t∥Σ−1
t
> 1}

and I2 := {t ∈ [T ] : ∥at/σ̄t∥Σ−1
t

≤ 1}. Notice that by construction, indices in I1 are when the summand is

2, and indices in I2 are when the summand is 2∥at∥Σ−1
t

· αT ≤ 2.
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Focusing on I1 :

|I1| ≤
T∑

t=1

min(1, ∥at/σ̄t∥2Σ−1
t
)

≤ 2d log
(R+ 1)2λ+ TA2

(R+ 1)2λ
(using Lemma 4)

Therefore: ∑
t∈I1

min(2, ∥at∥Σ−1
t
2αT ) = 2|I1| ≤ 4d log

(R+ 1)2λ+ TA2

(R+ 1)2λ

Now considering I2 : ∑
t∈I2

min(2, ∥at∥Σ−1
t
2αT )

= 2αT

∑
t∈I2

∥at∥Σ−1
t

(by construction of I2)

= 2αT

∑
t∈I2

σ̄t∥at/σ̄t∥Σ−1
t

≤ 2αT

√∑
t∈I2

σ̄2
t ·

√∑
t∈I2

∥at/σ̄t∥2Σ−1
t

(Cauchy-Schwartz)

Now notice the first term:√∑
t∈I2

σ̄2
t ≤

√∑
t∈I2

σ2
t + (R+ 1)2/d (by definition of σ̄t = max{σt, (R+ 1)/

√
d})

≤
√∑

t∈I2

σ2
t +

√∑
t∈I2

(R+ 1)2/d (since
√
a+ b ≤

√
a+

√
b for a, b > 0)

≤

√√√√ T∑
t=1

σ2
t +

√
(R+ 1)2T/d

The second term:

√∑
t∈I2

∥at/σ̄t∥2Σ−1
t

≤

√√√√ T∑
t=1

min(1, ∥at/σ̄t∥2Σ−1
t

) (by construction of I2)

≤

√
log

(R+ 1)2λ+ TA2

(R+ 1)2λ
(using Lemma 4)

Therefore:

∑
t∈I2

min(2, ∥at∥Σ−1
t
2αT ) ≤ 2αT ·

(√√√√ T∑
t=1

σ2
t +

√
(R+ 1)2T/d

)
·

√
2d log

(R+ 1)2λ+ TA2

(R+ 1)2λ

Finally:

E

[
T∑

t=1

min(2, ∥at∥Σ−1
t
2αT )

]
= E

[ ∑
t∈I1

min(2, ∥at∥Σ−1
t
2αT ) +

∑
t∈I2

min(2, ∥at∥Σ−1
t
2αT )

]

≤ 4d log
(R+ 1)2λ+ TA2

(R+ 1)2λ
+ 2αT ·

(√√√√ T∑
t=1

σ2
t +

√
(R+ 1)2T/d

)
·

√
2d log

(R+ 1)2λ+ TA2

(R+ 1)2λ

≤ Õ

(
Cd

√√√√ T∑
t=1

σ2
t + C(R+ 1)

√
dT

)
(since αT ≤ Õ(C

√
d) when λ = 1/B2)

Remarks on Regret Bound. Theorem 3 shows that for fixed and known corruption level C, Algorithm 1

achieves sub-linear regret in terms of T , but linear regret in terms of C. Next notice the
√∑T

t=1 σ
2
t term. If

we trivially upper bound each σ2
t by R2, then the regret becomes Õ(CdR

√
T ). This indicates that we may

be able to improve the regret bound if we incorporate some information about the variance.
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3.4 Extension: Algorithm for Unknown Corruption Level

If the corruption level C is unknown to the agent, then [Zhao et al., 2021] proposed an algorithm, Multi-level
weighted OFUL. The algorithm implements an action partition scheme to group historical data and main-
tains several additional estimators besides the original estimator θt. During action-selection, the algorithm
randomly selects one of the learners with different probabilities at each time-step. More specifically, the algo-
rithm partitions the historical data into lmax levels and maintain lmax sub-sampled estimators θt,1, ..., θt,lmax

at time-step t. The observed data obtained in time-step t goes into level l with probability 2−l if 1 < l ≤ lmax

and it goes to level 1 with probability 1−
∑lmax

l=2 2−l = 1/2 + 2−lmax .
Let the corruption experienced at level l, up to time-step t be:

Corruptiont,l =

t∑
i=1

I[f(i) = l]

R+ 1
sup
a∈Ai

|ri(a)− r′i(a)| (10)

where f(i) ∈ {1, ..., lmax} denotes the level that was chosen at time-step i.

The intuition is that if the corruption level C is less than or equal to 2l, then Ct,l can be upper-bounded
by some quantity that is independent of C. In addition, the learners whose level if greater than logC can
still learn θ∗ even with the corruption. On the other hand, for learners whose level if less than logC, the
algorithm can control the error by controlling the probability of selecting them. [Zhao et al., 2021] is able

to prove a Õ(C2d
√∑T

t=1 σ
2
t + C2R

√
dT ) regret bound for Multi-level weighted OFUL, which has an extra

factor of C as compared to the regret bound for known corruption level (Equation 9) due to the multi-level
structure maintained to deal with the unknown corruption level.

4 Further Reading

4.1 Adversarial Bandits

A closely-related, yet subtly different, bandit problem is the adversarial bandit problem [Auer et al., 1995]
where the environment is dynamic and can strategically adapt based on the agent’s past actions and obser-
vations. Some formulations of adversarial bandits even assume that the environment has access to the policy
or strategy of the proposed algorithms. For example, the environment could strategically change the reward
distributions over time or even adversarially generate the arm set or observed context observed by the agent
[Neu and Olkhovskaya, 2020]. This is in contrast to bandits with adversarial corruptions which assumes the
true environment is stationary, but an adversary corrupts the information on the rewards provided to the
agent. In adversarial bandit environments, algorithms must implement randomized policies to gather diverse
information and make it difficult for the adversary to predict and counter the agent’s decisions. One of the
most simple yet foundational algorithms in this environment is Exp3 [Auer et al., 2002].

4.2 Stochastic Bandits with Adversarial Corruptions

4.3 Robust Regression

Bandits with adversarial corruptions is closely tied to the long-studied problem of robust statistics [Li, 2018]
and more specifically robust regression [Hopkins and Li, 2018, Klivans et al., 2018]. In these problems, the
environment operates in a stochastic setting where the covariates are drawn i.i.d. from some data distribution,
but the adversary can arbitrarily alter any η fraction of the responses or labels and the corresponding
covariates. Algorithms in these settings are evaluated by their ability to minimize the clean mean squared
error (MSE), The mean squared error over the subset of data points that are uncorrupted. Notice that
η must be less than 1/2 (optimal breakdown point) or no estimator can accurately nor tractably achieve
low non-trivial clean MSE. A majority of the work assume that the uncorrupted data is evenly spread out:
such as assuming the generative model is Gaussian [Diakonikolas et al., 2019], or atleast hypercontractive
[Klivans et al., 2018], or certifiably sub-Gaussian [Hopkins and Li, 2018].
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A Auxillary Lemmas

Lemma 4. (Lemma 11 in [Abbasi-Yadkori et al., 2011]) For any λ > 0 and sequence {xt}Tt=1 ⊂ Rd for
t ∈ 0 ∪ [T ], let Vt = λI +

∑t
i=1 xix

⊤
i . Then provided that ∥xt∥2 ≤ L holds for all t ∈ [T ], we have:

T∑
t=1

min{1, ∥xt∥2V −1
t−1

} ≤ 2d log
dλ+ TL2

dλ

Lemma 5. Let Vt = λI +
∑t

j=1 ata
⊤
t for λ > 0 ∈ Rd×d be the matrix defined in regularized least squares.

Then for any vector x ∈ Rd,
∥x∥V −1

t
≤ ∥x∥Vt

Proof. First confirm that Vt is a positive definite (PD) matrix. This is because each ata
⊤
t and λI are PD

matrices and the sum of PD matrices is also a PD matrix. By definition of Vt being a PD matrix, all
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eigenvalues λ1, ..., λd of Vt are positive with corresponding eigenvectors v1, ..., vd. By definition, V −1
t has the

same eigenvectors but with reciprocal eigenvalues 1
λ1
, ..., 1

λd
also positive. Then:

∥x∥Vt
= x⊤Vtx = x⊤PDP−1x = x⊤

d∑
i=1

λiviv
⊤
i x (eigendecomposition of Vt)

Similarly,

∥x∥V −1
t

= x⊤V −1
t x = x⊤PD−1P−1x = x⊤

d∑
i=1

1

λi
viv

⊤
i x (eigendecomposition of V −1

t )

=⇒ x⊤Vtx− x⊤V −1
t x = x⊤

d∑
i=1

(
λi −

1

λi

)
viv

⊤
i x

=

d∑
i=1

(
λi −

1

λi

)
⟨x, vi⟩2 ≥ 0
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